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Abstract—Continuous test-based cloud certification uses tests
to automatically and repeatedly evaluate whether a cloud
service satisfies customer requirements over time. However,
inaccurate tests can decrease customers’ trust in test results and
can lead to providers disputing results of test-based certification
techniques. In this paper, we propose an approach how to
evaluate the performance of test-based cloud certification
techniques. Our method allows to infer conclusions about
the general performance of test-based techniques, compare
alternative techniques, and compare alternative configurations
of test-based techniques. We present experimental results on
how we used our approach to evaluate and compare exem-
plary test-based techniques which support the certification of
requirements related to security, reliability and availability.
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I. INTRODUCTION

Continuous test-based cloud certification automatically

and repeatedly tests if a customer’s requirements are sat-

isfied. Inaccurate tests undermine both provider’s and cus-

tomer’s trust: While tests that incorrectly indicate satisfac-

tion of requirements erode customer’s trust, providers will

dispute test results that incorrectly suggest customer’s re-

quirements are not fulfilled. Therefore, it is vital to evaluate

how well continuously executed tests perform, that is, how

close are produced test results to their true values?

Customers’ requirements whose satisfaction should be

checked can be derived from certificates, e.g. CSA STAR

[1], or guidelines, e.g. NIST SP 800-53 [2] and ENISA IAF

[3]. If the cloud service satisfies the requirements, then a

report called certificate is produced, stating compliance.
Traditionally, producing a certificate is a discrete task

whose results are valid for a period of time, usually ranging

from one to three years. In regard to cloud services, the

assumption of stability underlying traditional certification

does not hold. A cloud service’s attributes may change over

time and such changes are hard to predict or detect by a

customer [4]. Applying the concept of certification to cloud

services therefore requires a different approach capable of

continuously detecting ongoing changes and assessing their

impact on customer requirements.

Requirements derived from, e.g., CSA’s Cloud Control

Matrix (CCM) [5] are generic, often times inherently am-

biguous making automatic validation infeasible. Thus, sup-

porting a continuous check whether cloud services comply

with these high-level requirements requires an extraction of

underlying properties which can be automatically evaluated,

thereby bridging the semantic gap. Reasoning about these

properties requires collecting and evaluating evidence [6],

i.e. observable information of a cloud service, e.g. monitor-

ing data, source code or documentation. Test-based certifica-
tion techniques produce evidence by providing some input to

the cloud service, usually during productive deployment, and

evaluating the output, e.g. calling a cloud service’s RESTful

API and comparing responses with expected results.

Recent research proposes an approach to test-based cloud

certification [7][8] whose implementation focuses on testing

security properties of OpenStack. Other work focuses on

designing specific test-based techniques [9][10]. Yet neither

of them consider evaluating the performance of their test-

based techniques when tests are executed continuously.

In this paper, we propose a method to evaluate the per-

formance of test-based cloud service certification techniques

when executed continuously. To that end, we introduce

four universal test metrics which can be used with any

test-based certification technique. Using these test metrics,

we derive performance measures, allowing us to evaluate

and compare alternative test-based techniques as well as

alternative configurations of such techniques. Furthermore,

based on the performance measures, our method permits

us to draw conclusions about the general performance of

a continuously triggered test-based technique. We present

detailed experimental results on evaluating and comparing

exemplary test-based techniques and their configurations.

The contributions of this paper are as follows:

• Four universal test metrics applicable to any continu-

ously executed test-based certification technique,

• performance measures to evaluate and compare test-

based certification techniques triggered continuously,

• a method to infer conclusions about the general perfor-

mance of test-based certification techniques, and

• exemplary evaluations of test-based techniques sup-

porting certification of requirements related to security

configurations, resource availability, and reliability.

After presenting the main elements of our continuous

test-based certification framework (Section II), we describe

our method to evaluate the performance of continuously

executed test-based certification techniques (Section III).

Then we present experimental results of evaluating test-

based techniques (Section IV). Finally, we discuss related

work (Section V) and conclude this paper (Section VI).
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II. CONTINUOUS TEST-BASED CLOUD CERTIFICATION

This section outlines the main elements of our framework

to support continuous test-based cloud certification: Test
suites combining test cases, workflows modelling dependen-

cies between test suites, metrics reasoning about test suites’

results, and preconditions validating assumptions about the

environment of the cloud service under test.

A. Test cases

Test cases form the primitive of any test, they implement

any steps executed during the test, e.g. first establish an SSH

connection to a virtual machine, then execute a command

to download and install a package on the VM. A test case

possesses initialization parameters, e.g. connecting to a VM

via SSH may require username, hostname, and a path to a

keyfile. Further, each test case possesses assert parameters

specifying expected results, e.g. the returned values of the

test case have to equal a particular string. Multiple test cases

can be executed concurrently or successively.

Beyond simply passing or failing, the result of a test case

run also includes start and finishing time of the run and

can provide further information, e.g the maximum average

response time of TCP segments measured to test latency of

a remote host.

Note that our framework requires executions of test cases

to be independent of each other, that is, whether a test case

is executed or not does not depend on the results of other

test cases. However, we note that concurrently executing

multiple test cases on one service can naturally produce side-

effects, i.e. test case results that affect each other.

B. Test suites

Test suites combine test cases, each suite containing at

least one test case. A test suite passes if all contained test

cases pass. Execution of a test suite can be triggered multiple

times, possibly set to infinity, where the current iteration of a

test suite has to be completed, i.e. all test cases bound to the

test suite have to be completed, in order for the following

iteration to start. The interval between consecutive iterations

of a test suite can be fixed, e.g. 10 minutes after the previous

test suite execution completed, or the interval can serve as

a window from which the start of a test suite’s execution is

selected randomly.

Once a test suite run (tsr) completes, it returns failure or

success, the run’s start (tsrs) and end time (tsre), as well

as the results of all bound test cases. Hereafter, we use the

term test and test suite run synonymously.

C. Workflow

A workflow models dependencies between iterations of a

test suite and between iterations of different test suites. To

that end, a workflow controls test suites’ executions based on

test suites’ results. As a basic example, consider after having

successfully completed a number of iteration, a test suite run

t

test failed

fpsD1

tsrs tsre tsrs tsre tsrs tsre

fpsD0

tsrs tsre tsrs tsre tsrs tsretsrs tsre tsrs tsre tsrs tsre

test passed

0 0 1 1 2 2 3 3 4 4 4 4 5 5 6 6 7 7

Figure 1: Continuously executed tests (tsr) with universal test metric fpsD

fails. The workflow defines how to handle this failure, e.g.

whether to continue running the test suite for the remaining

iterations, to terminate the test or start another test suite.

D. Test metrics

Automatically evaluating statements over cloud services

properties, e.g. the availability of the cloud service is higher

than 99.999% per day, requires one final construct: Metrics.

A metric takes the results of test suite runs as input, performs

a specified computation and returns the result. To that end,

a metric can use any information available from the result

of a test suite run, e.g. at what time the test suite run was

triggered, when it finished, and further information contained

in the results of test case runs bound to the test suite run.

Universal test metrics: The following four test metrics

are universally applicable to any test-based certification

technique, independent of particular designs of test cases,

test suites or workflow. Their general applicability makes

them an ideal basis to construct measures to evaluate the

performance of test-based certification techniques.

1) Basic-Result-Counter (brC): This metric counts the

number of times a test fails or passes. As Figure 1 shows, a

test result is only returned after its execution has completed,

i.e. at tsrei . This metric can be used to evaluate properties

only requiring to know if or how often a test failed or passed,

e.g. if and how often a virtual machine is accessible through

some blacklisted ports.

2) Fail-Pass-Sequence-Counter (fpsC): A failed-passed-
sequence (fps) is a sequence of test suite run results

which, after a test passed, starts with failed test and ends

with the next occurrence of a passed test. As an example,

consider trying to connect to a VM for ten times in a

row. The first three times the login succeeds (p), then for

four times, the login fails (f ) and for the remaining three

times the test passes again. The fps in this example is

fps10SSH = 〈f, f, f, f, p〉.
Drawing on this definition, the fpsC counts the number of

occurrences of fps of a particular test. Figure 1 shows the

sequence 〈f, f, f, p, p, f, f, p, p〉 which contains two fps.

3) Fail-Pass-Sequence-Duration (fpsD): The metric

fpsD builds on the notion of fps, it measures the time

between the first failed test until the next test passes. It can

be used to evaluate properties over individual periods, e.g.

time needed to fix a misconfigured webserver’s TLS setup.
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Evaluating properties over time requires to decide at

which point in time a test is considered failed or passed,

i.e. whether to consider start time tsrs or end time tsre of

the respective test. As displayed in Figure 1, we define the

start of a fpsD to be the start time of the first failed test

tsrsi . For the end of a fpsD, we choose the start time of the

next passed test tsri+j . This definition of fpsD is robust

against variations of a test’s execution time, e.g. if a test

failing takes longer than the test passing.

4) Cumulative-Fail-Pass-Seq-Duration (cfpsD): This

metric builds on fpsD by accumulating any measured

durations until a particular point in time, thus providing

a global value. This metric can, for instance, be used to

describe the total downtime of a server per year.

E. Preconditions

Naively executing tests is prone to false negatives, e.g.

testing a webserver’s TLS configuration may fail not because

of a vulnerable configuration but because the webserver can-

not be reached. Computing metrics based on false negatives

occurring in test suite runs will further propagate their error.

Thus assumptions made about the environment of the cloud

service under test, i.e. preconditions, also need to be tested.

One way to model preconditions within our framework

is to design test suites to which test cases are bound

serving to test preconditions, e.g. firstly establishing a virtual

machine is reachable through ping and then test the TLS

configuration. This allows to use preconditions to control

the workflow, thus tests’ execution adapt to environmental

conditions discovered at runtime. Another option consists

of testing preconditions as part of the main test suite run

and considering the result during metric computation. For

instance, when testing a webserver’s TLS configuration,

preconditions which check the reachability of the webserver,

e.g. by issuing TCP connects, are executed concurrently.

Only if the precondition pass, the result of the TLS test

case will be considered when computing the test metric.

III. EVALUATING TEST-BASED TECHNIQUES

This section describes a method how to evaluate results

of test-based certification techniques and infer conclusions

about their general performance. We begin with a high-

level overview of how our method works (Section III-A).

Thereafter, we describe how to simulate violations of cloud

services properties (Section III-B) and introduce perfor-

mance measures to evaluate test-based techniques (Section

III-C). Finally, we explain how to infer conclusions about

test-based techniques’ general performance (Section III-D).

A. Overview

We treat a test-based certification technique as a black

box, i.e. we have no information how well this technique

detects property violations. Put differently: Correct results

and errors of a test-based technique follow some unknown

distributions. We take samples from these unknown distribu-

tions by running experiments which simulate property vio-

lations. Using these experiment results, we infer conclusions

about the general performance of the test-based technique.

Figure 2 provides an overview of our approach. As part

of a simulation’s configuration, we randomize duration of

and time between each property violation event within some

specified bounds (Step 1). Then the test-based technique

is configured according to the framework described in the

previous section: Selecting test cases, setting test suites pa-

rameter and choosing a workflow. Thereafter, the test-based

technique as well as the property violation simulation are

executed (Step 2). Provided our sample size is sufficiently

large, i.e. the test-based technique has produced enough

results (Step 3), we infer parameters of the unknown parent

distribution, that is, we draw conclusions about the general

performance of the test-based technique (Step 4). These

inferences are considered valid with regard to the test and

simulation configuration parameters.

(1) (2)

valid within bounds used for randomization

valid with respect to specific configuration Simulation 
configuration

Test 
configuration

randomize
property
violation 

simulation

infer 
conclusions 

about 
performance

(3) (4)

execute
test-based 
certification 
technique

observe 
test 

results

Figure 2: Evaluating performance of test-based techniques

B. Simulating property violations

A simulation manipulates a cloud service under test to

mock violations of properties which a specific test-based

certification technique aims to detect. Thus simulations are

essential to establish the ground truth to which results pro-

duced by test-based certification techniques are compared.

1) Repeated property violation simulation: Since the test-

based techniques whose performance we want to evaluate

are repeatedly executed, simulating properties’ violations

need to be executed repeatedly as well. We can describe

this repeated property violation simulation as a sequence

V = 〈pve1, pve2, . . . , pvei〉 where each element pve is a

property violation event. Each pve ∈ V is a tuple consisting

of the duration of the property violation pveD and waiting

time before start simulating an event pveW .

2) Simulation Design: The design of a simulation is

driven by the property that should be tested. For example, a

simulation may start and stop virtual machines to simulate

violations of availability, publicly expose sensitive interfaces

to mimic violations of secure service configurations, or

limiting bandwidth to simulate violations of quality of

service etc. The first step when designing a simulation

thus consists of inspecting the property which a test-based

techniques aims to check. Then identify potential violations

to simulate, including the lower and upper bound of the
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expected frequency of violations, i.e. size of pveW , and the

duration of each violation pveD. Note that deciding on how

many property violation events to simulate is driven by the

selected performance measures which will be explained in

detail in Section III-D.

3) Standardizing property violation events: Simulations

establish the ground truth against which we evaluate spe-

cific test-based certification techniques. To infer conclusions

about the general performance of a continuously executed

test-based technique, ideally any possible sequence of any

possible property violation event has to be simulated. Nat-

urally, this is infeasible in practice and we have to select a

sequence of property violation events V to simulate which

meets our time and space constraints. But how do we select

a sequence V still allowing us to draw conclusions about the

general performance of a test-based certification technique?

The answer consists of two parts: At first, we need to stan-

dardize the property violation event: For each pve we use to

construct V , the duration of the property violation pveD and

the waiting time before start pveW are selected randomly

from intervals [pveDL, pveDR] and [pveWL, pveWR], re-
spectively. Choosing these intervals’ bounds lets us config-

ure a property violation simulation according to our space

and time limitations. Secondly, we need to decide how many

pve, i.e. |V | are required to infer conclusions about the

general performance of the test-based certification technique.

This depends on the statistical inference method which, in

turn, depends on the performance measure. We will address

this question for each performance measure in Section III-D.

C. Performance measures

This section describes performance measures which are

based on the test metrics brC, fpsC, fpsD, and cfpsD
introduced in Section II-D. To calculate the performance

measures, we use the results produced by a test-based tech-

nique during a corresponding property violation simulation.

1) Basic-result-Counter: This section explains how to

use the metric brC which counts failed and passed tests

to evaluate a test-based technique. To that end, we check

whether a technique’s test results correctly indicated absence

or presence of a simulated property violation.

True negative result: Any test produces a true negative

result (brTN ) if the test fails at a time when a property

violation is simulated. Counting all the true positive test

results gives us brCTN .

Pseudo true negative result: Consider the following

example: A test has started measuring available bandwidth

of a virtual machine and only after the test started, the

bandwidth limitation is simulated. While at the first no

property was violated, later during the test it was. If the test

in total determines that available bandwidth was insufficient,

then the test fails, producing a pseudo true negative result.

This example describes a special case where a test has started

before a property violation simulation starts and finishes

after this violation has started. If the test fails, indicating

a property violation, then we refer to this result as pseudo

true negative (brPTN ). We describe the count of pseudo true

negative test results by brCPTN .

False negative result: A false negative result (brFN ) is

observed if a test fails when there was no property violation.

Counting all occurrences of false negative test results gives

us brCFN .

False positive result: False positive results (brFP ) are

observed if a test passes when a property violation was

simulated. brCFP counts all false negative results.

Performance measures (ebrC): Based on these observa-

tions, we compute four standard performance measures for

binary classification: True negative rate tnr, false positive

rate fpr, false omission rate for, and negative predictive

value npv:

tnrbrC = (brCTN+brCPTN )
(brCTN+brCPTN+brCFP )

,

fprbrC = brCFP

(brCTN+brCPTN+brCFP )
,

forbrC = brCFN

(brCTN+brCPTN+brCFN )
, and

npvbrC = (brCTN+brCPTN )
(brCTN+brCPTN+brCFN )

.

2) Fail-Pass-Sequence-Counter: In this section, we ex-

plain how we derive performance measures using the metric

fpsC which counts the occurrence of fps produced by a

test-based techniques. We check if and how any fps overlaps
with property violation events pve.

fpsD

pveD

pves pveefpss fpse t

efpsDpre efpsDpost

fpsD (== efpsDFN)

t

fpsD

pveD

e fpse t

efpsDpre efpsDpost

fpss

pvei
e

fpss fpse

pveD (== efpsDFP)

t
fpsi

e pves pvee fpsi+1

(a) True negative fps

(c) Pseudo true negative fps

(b) False negative fps

(d) False positive fps

pvei+1
s

pvei+1
s

spvei+1pvei
e

Figure 3: Performance measures based on fps and fpsD

True negative fps: If a fps starts (fpss) after a pve starts
(pvesi ) and starts (fpss) before this pve ends (pveei ), then
fps is considered a true negative:

fpsTN = pvesi ≤ fpss ≤ pveei .

Note that Figure 3(a) only shows a single cve which is

correctly detected by a fps. However, a single fpsTN can

cover multiple pve if the interval between tests is a multiple

of the property violation events’ duration. Further, a fpsTN

may contain a false positive test result (brFP ) or false

negative test results (brFN ). The latter is the case if after the

pve ended, basic results still incorrectly indicate a property
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violation and are counted as failed tests of the fpsTN . We

use fpsCTN to count the number of fpsTN observed during

a property violation simulation.

False negative fps: If a fps starts after the last pve ends

(pveei ) and ends (fpse) before the next pve starts (pvesi+1),

then this fps is considered a false negative result:

fpsFN = pveei < fpss ∧ fpse < pvesi+1.

Figure 3(b) illustrates a fpsFN . fpsCFN counts all occur-

rence of fpsFN during a property violation simulation.

Pseudo true negative fps: A fps whose first failed tests

are false negatives (brFN ) or whose first failed test is a

pseudo true negative result (brPTN , for details see Section

III-C1). As Figure 3(c) shows, the fps starts after the last

pve ends and starts before the next pve starts and ends only

after the next pve starts:

fpsPTN = pveei < fpss < pvesi+1 ≤ fpse.

The count of fpsPTN within a property violation simulation

is described by fpsCPTN . Note that, analogous to a true

negative fps, a fpsPTN can cover multiple pve.
False positive fps: Figure 3(d) illustrates a pve that starts

after the last fps ended and ends before the next fps starts

(fpssi+1). A missed pve is considered a false positive:

fpsFP = fpsei < pves ∧ pvee < fpssi+1.

We use fpsCFP to count occurrences of fpsFP .

Performance measures (efpsC): Based on fpsCTN ,

fpsCFN , fpsCPTN , and fpsCFP , we compute tnr, fpr,
for, and npv. The calculation of these measures is analo-

gous to those for brC presented in the previous section.

3) Fail-Pass-Sequence-Duration: This section details

how to construct performance measures from the test metric

fpsD. This metric captures the time between the start of

the first failed test (fpss), i.e. first element of a fps, and
the start of the next subsequent passed test (fpse), i.e. last
element of a fps.

True negative fpsD: If we observe a true negative fps,
then we can compute the difference between the duration of

the fps, i.e. fpsD = fpse−fpss and the duration pveD of

any property simulation events covered by the fps. Figure
3(a) shows that a fpsTN covers at least one pve. Yet it can,
at most, cover all pve contained in the sequence V of the

property violation simulation:

efpsDTN = fpsD −∑|V |
i=1 pveDi.

Note that we do not use the absolute value of efpsDTN .

This allows us to observe whether an fpsD overestimates or

underestimates a property violation event’s duration. In order

to assess the measurement error of an efpsDTN relative to

the property violation duration, we use

efpsDTN
rel = |efpsDTN |∑|V |

i=1 pveDi

.

As Figure 3(a) illustrates, a test-based technique may be

inaccurate when determining the start of a property violation

event. Capturing this error, we compute the time difference

between the start of an fps, i.e. when the test detected a

property violation (fpss), and the start of the simulated

property violation event (pves), i.e. efpsDTN
pre = fpss −

pves. Our test-based certification technique may also have

an error when determining the end of a property violation

event. To describe this error, we compute the time difference

between the end of property violation event (pvee) and the

detected end of the property violation by the test (fpse), i.e.
efpsDTN

post = pvee − fpse.
Pseudo true negative fpsD: If we observe a pseudo true

negative fps, then computing the error is similar to true

negative fpsD (see Figure 3(c)): efpsDPFN is the differ-

ence between the duration of a pseudo true negative fps
and the duration of any covered property simulation event.

efpsDPFN
pre captures the difference between the observed

and actual start of a cve while efpsDPFN
post describes a test-

based technique’s error when determining the end of a cve.
False negative fpsD: As Figure 3(b) shows, the entire

duration of a false negative fps is erroneous since it incor-

rectly indicates a duration of a property violation event, i.e.

efpsDFN = fpse − fpss.
False positives fpsD: If we observe a false positive fps,

i.e. the absence of a fps despite a pve occurred, the error

of the missed duration is computed as follows (see Figure

3(d)): efpsDFP = pvee − pves

Performance measures (efpsD): During a property vi-

olation simulation, we may observe instances of each type

of error on fpsD, e.g. efpsDTN
post. We treat observations of

each type of error on fps as separate distributions. For each

of the observed distributions, we compute standard descrip-

tive statistics, i.e. mean x̄, median x̃, standard deviation sd,
min and max.

4) Fail-Pass-Sequence-Cumulative-Duration: This sec-

tion shows how to derive performance measures based on

the test metric cpfsD. This metric accumulates fpsD over

time, thus providing a global value.

Performance measures (ecfpsD): To describe the overall

performance of a test-based technique, we calculate the

absolute and relative error of the cumulative duration of

true negative and pseudo true negative fpsD. Considering

the case of fpsDTN , we sum over the duration of any true

negative fps ∈ F which were observed during the property

violation simulation V . The result is compared to the total

duration of simulated property violations:

ecfpsDTN =
∑|F |

i=1 fpsD
TN
i −∑|V |

j=1 cveDj .

We then assess the measurement error of ecfpsDTN relative

to the total property violation duration, that is,

ecfpsDTN
rel = |ecfpsDTN |∑|V |

j=1 cveDj

.
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Regarding false negative and false positive fpsD, we sim-

ply calculate the sum of the durations of any fpsDFN and

fpsDFP observed during the property violation simulation

to obtain ecfpsDFN and ecfpsDFP , respectively.

D. Inferring general performance

This section describes how we use the performance mea-

sures for test metrics bfC, fpsC, and fpsD introduced in

the previous section to infer conclusions about the general

performance of test-based certification techniques.

1) Basic-Result-Counter: Among others, we use the neg-

ative predictive value npv on the test metric bfC to describe

the performance of a test-based technique (see Section

III-C1). Treating npv as a proportion allows us compute

a confidence interval for npv. Considering, for example, a

confidence interval of 95%, we can state that we are 95%

confident that the npv of a specific test-based certification

technique – with respect to the selected test and simulation

configurations – is contained in the interval. We can compute

this interval estimate with npv ± z95% × se where z95% is

the value that separates the middle 95% of the area under

the standard normal distribution, and se is the standard error

which can be estimated with se =
√
p× (1− p)/n. In our

example for npv, the sample size n is the sum of brCTN ,

brCPTN and brCFN . Using the standard normal distribu-

tion requires the sampling distribution of the proportion to

be gaussian. To determine the required sample size ñ, the
standard approach is to solve margin of error E = z95%×se
for the sample size ñ:

ñ = z95%×n̂pv×(1−n̂pv)
E2 (1)

where n̂pv is an educated guess of npv proportion in the

parent distribution and E is the desired margin of error.

Note that choosing n̂pv = 0.5 is the conservative option.

Recall that in Section III-B3, we posed the question how

many violation events |V | need to be simulated to allow

for inferring conclusions about the general performance

of continuously executed test-based certification techniques.

Continuing our example for npv, finding the required size of

V can be formulated as an optimization problem: We have

to simulate at least as many property violation events pve as
are required to observe ñ test results. Following these steps,

interval estimates for the remaining performance measures

fprbrC , forbrC , and tnrbrC can be computed analogously.

2) Fail-Pass-Sequence-Counter: Based on fpsC, we

compute the same performance measures as for brC. Thus,

we can use the approach described in the previous section

to calculate interval estimates for the proportions of each

performance measure. However, there is one important dif-

ference when determining the required number of property

violation events |V |: We now have to simulate at least as

many property violation events as are needed to observe ñ
fps during the property violation simulation.

3) Fail-Pass-Sequence-Duration: For each of type of

error on fpsD, e.g. efpsDTN , efpsDPTN
pre , and efpsDFN ,

we compute the mean x̄ of the observed distribution as

a performance measure. To make general statements about

the errors on fpsD, we construct a confidence interval for

each mean. As an example, consider efpsDTN , i.e. the

mean error that a test-based technique has in determining

the duration of a property violation event: A confidence

interval on this mean allows statements such as we are

99% confident that the average error of a specific test-based

technique – constrained by the chosen test and simulation

configurations – makes when estimating the duration of a

property violation event is contained in the interval. We

compute this estimate with x̄efpsDTN ± t99% × se where

t99% is the value that separates the middle 99% of the area

under the t-Distribution and se is the standard error which

can be estimated with se = sd/
√
n. In our example, the

sample size n is the number of observed true negative fps
and sd is the standard deviation. Similar to Section III-D1,

to determine the required sample size ñ, the desired margin

of error E is solved for the sample size ñ, that is,

ñ = σ2×t2

E2 (2)

where σ2 is an educated guess of the population variance

based on initial samples of efpsDTN or historical values.

Inferring statements about the general performance of a

test-based technique based on the mean of, e.g., efpsDTN

requires simulating a minimum number of property violation

events. In our example for efpsDTN , we find the minimum

size of V by simulating as least as many property violation

events as are needed to observe ñ fpsTN . Using these steps,

interval estimates for the means of efpsDTN
pre , efpsD

TN
post,

efpsDPTN , efpsDPTN
pre , efpsDPTN

post , efpsDFN , and

efpsDFP can be computed analogously.

IV. APPLICATION

This section presents experimental results of applying our

method to evaluate and compare exemplary test-based certi-

fication techniques. We begin by outlining the components

of our experiment setup (Section IV-A). Then we present two

scenarios where a cloud service provider seeks certification

of requirements related to availability, security and reliability

(Section IV-B and IV-C).

A. Setup and environment

This section outlines tested cloud services as well as the

components we used to conduct our experiments.

1) Cloud service under Test: We test IaaS instances of

OpenStack Mitaka (IaaSOS). Each of the tests presented

in Sections IV-B and IV-C were executed on individual

instances – in total five virtual machines – all attached

to the same tenant network, each running Ubuntu 16.04

Server, with 2 vCPU, and 4 GB RAM. Machines used to

test security configurations (Section IV-C) were additionally
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running an Apache Webserver and a MongoDB database

which we refer to as SaaSOS and PaaSOS, respectively.

2) Simulation framework: We implemented a lightweight

framework in Java that supports simulation of property vio-

lation events as described in Section III-B. This framework

runs on a designated instance, attached to the same tenant

network as IaaSOS, PaaSOS, and SaaSOS.

3) Test-based certification framework: Our prototype is

implemented in Java and supports all elements of the frame-

work introduced in Section II. It is deployed on an external

host, in a different network than the tested cloud services.

4) Evaluation engine: This component is also built in

Java and computes the performance measures described in

Section III-C. We use the Apache Commons Math library to

compute our test statistics and simulation parameter.

B. Testing resource availability

In this scenario, a cloud service provider seeks to certify

requirements related to resource availability and provision-

ing. Such requirements can, e.g., be derived from: Control

SC-6 Resource Availability of NIST SP 800-53 [2], IVS-04
of the Cloud Control Matrix (CCM) upon which the CSA

certificate is based [1], or Section 6.3.7 Resource Provision-
ing of ENISA IAF [3]. To that end, the provider wants to

select a test-based technique which overestimates duration of

detected violations of resource availability requirements as

little as possible. This implies that false negative test results

incorrectly indicating an availability requirement violation

should be as low as possible.

1) Alternative test-based techniques: The cloud provider

can select one of three candidate techniques: The first

possibility is PingTest which pings IaaSOS where each tests

sends ten ECHO_REQUEST packets. A test passes if the

returned round trip time (rrt) satisfies both of the following

assertions: assert_rtt_avg < 20ms and assert_rtt_sd <
10ms. The second possible technique uses TCP packets to

determine whether IaaSOS is available (TCPTest). We use

Nping1 to execute this test which passes if the maximum

average response time and the maximum response time of

probes are not greater than 75 and 100 ms, respectively. The

third possibility is SSHTest which uses the Trilead SSH22

library to connect to IaaSOS via SSH and then test the

session using an SSH_MSG_CHANNEL_REQUEST. The

test passes if no I/O exception is thrown when connecting

or when session testing.

The interval of each of the three test-based techniques

was configured to 60 seconds, i.e. the next test started 60

seconds after the previous one completed.

2) Simulation configuration: To evaluate our three can-

didate techniques, we simulated 1000 downtimes of IaaSOS.

Each event lasted at least 60 seconds plus selecting [0, 30]

1https://nmap.org/nping/
2https://github.com/jenkinsci/trilead-ssh2

seconds at random (pveD). The interval between consec-

utive downtimes was at least 120 seconds plus selecting

[0, 60] seconds at random (pveW ). Table I shows the total

downtime (cpveD), the mean duration of each downtime

(x̄pveD) and standard deviation (sdpveD) for each property

violation simulation V used to evaluate PingTest, TCPTest,
and SSHTest.

Table I: Simulation parameters used for PingTest, TCPTest, and SSHTest

Simulation parameter VPingTest VTCPTest VSSHTest

cpveD (sec) 75102.11 75544.07 75706.71

x̄pveD (sec) 75.11 75.54 75.71

sdpveD (sec) 8.97 8.70 8.82

3) Test statistics: Table II summarizes the results of

PingTest, TCPTest, and SSHTest. Besides the universal test

metrics brC, fpsC, fpsD and cfpsD introduced in Section

II-D, we also include the total number of executed tests

(tsrC) as well as the mean (x̄tsr), standard deviation (sdtsr),
min (mintsr) and max (maxtsr) duration of tests.

4) Performance: Table III shows the results of perfor-

mance measures selected for this scenario: TCPTest and

SSHTest perform perfect on npv and for since they do not

return any false negative fps (Table II). Yet SSHTest has a
relative average error of 102.47% (x̄rel

TN ) when estimating the

duration of a property violation event. This leads to a total

overestimation of the simulated downtime of 8528208 ms

(TN (ms)) or 11.26% (TN (%)). In context of our scenario,

SSHTest is thus not a suitable choice.

PingTest has the lowest relative average error (x̄rel
TN ) when

measuring a simulated downtime. Yet PingTest on average

overestimates a simulated downtime by 5725 ms (x̄TN ),

resulting in a total overestimation of the simulated downtime

of 3503495 ms or 4.66%. The cloud provider will select the

TCPTest because it underestimates a simulated downtime

on average by 425 ms, resulting in underestimating the total

simulated downtime by 963437 ms or 1.28%.

5) Inferring general performance: Table III shows mar-

gins of error Etnr, Efor, Enpv or ETN which we use to

construct interval estimates providing conclusions about the

general performance of a test-based technique. As described

in Section III-D3, such inferences require a minimum sample

size, i.e. a minimum number of observed brC or fps.
The next two paragraphs exemplify how to calculate the

minimum sample size for PingTest and TCPTest.
In the case of PingTest, we observed 966 true negative

fps which we use to calculate a 95% confidence level for

x̄TN , i.e. the average error each true negative fps makes on

estimating a downtime event: 5725±893ms. As pointed out

in Section III-D3, we can determine the minimum number

of fpsTN required for this inference using formula (2).

Lets assume that the observed value for the margin of

error coincides with our desired value for E95%
TN : If we use

the observed value for E95%
TN , the standard deviation from

PingTest as an estimate for the population variance (σ2) and
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Table II: Summary of test statistics of PingTest, TCPTest, and SSHTest

Test statistic PingTest TCPTest SSHTest

ts
r

tsrC 3153 3546 2491

x̄tsr (sec) 12.04 4.38 30.91

sdtsr (sec) 4.51 0.47 44.90

mintsr (sec) 9.01 4.02 0.54

maxtsr (sec) 20.03 5.22 127.34

br
C

brCTN 1002 1142 508

brCPTN 0 0 0

brCFP 4 8 479

brCFN 2 6 0

fp
sC

fpsCTN 966 983 476

fpsCPTN 1 4 0

fpsCFP 33 13 492

fpsCFN 1 0 0

fp
sD

x̄TN (sec) 81.23 75.28 176.96

sdfpsDTN (sec) 13.57 23.82 61.40

x̄PTN (sec) 139.1 145.19 0.0

sdPTN (sec) 0.0 32.06 0.0

x̄FP (sec) 63.74 62.98 72.99

sdFP (sec) 2.63 4.13 8.36

x̄FN (sec) 69.12 0.0 0.0

sdFN (sec) 0.0 0.0 0.0

cf
ps

D

TN (sec) 78466.5 73999.86 84234.91

PTN (sec) 139.10 580.77 0.0

FP (sec) 2103.27 818.69 35909.87

FN (sec) 69.12 0.0 0.0

Table III: Evaluation of techniques to test resource availability

Performance measure PingTest TCPTest SSHTest

efpsC

tnr 0.967 0.987 0.4917

E95%
tnr 0.0111 0.007 0.0315

for 0.001 0.0 0.0

E95%
for 0.002 0.0 0.0

npv 0.999 1.0 1.0

E95%
npv 0.002 0.0 0.0

efpsD
(ms)

x̄TN 5725 -425 79709

x̃TN 3641 -6385 98840

sdTN 14147 22326 35413

E95%
TN 893 1397 3189

efpsDrel
(%)

x̄rel
TN 13.19 19.95 102.47

sdrel
TN 14.54 18.98 46.42

E95%
rel,TN 0.92 1.19 4.18

ecfpsD
TN (ms) 3503495 -963437 8528208

TN (%) 4.66 1.28 11.26

FN (ms) 69124 0 0

500 degrees of freedom for the t distribution, then we obtain

ñ = σ2×t2

E2 = 141472×1.962

8932 ≈ 965

required true negative fps. Thus we have to simulate

sufficient property violation events to observe at least 965

fpsTN . Alternatively, if our desired margin of error ETN

was 1000 ms, then ≈ 769 fpsTN would suffice. Since we

observed 966 fpsTN , we can state that we are 95% confident

that the average error that PingTest makes on each fpsTN–

with respect to the chosen test and simulation configurations

– is between 4832 and 6618 ms.

Considering TCPTest, the sum of observed fpsCTN ,

fpsCPTN and fpsCFP equals 1000 fps (Table II). On

this basis, we compute the 95% confidence level for the

true negative rate tnr, i.e. 0.987± 0.007. If we assume the

observed value of Etnr to be our desired one, then we can

obtain the required sample size for confidence intervals for

proportions by applying formula (1) to tnr, that is,

ñ = z95%×t̂nr×(1−t̂nr)
E2 = 1.96×0.987×(1−0.987)

0.0072 ≈ 514.

This means that sufficient property violation events have to

simulated to observe 514 fps. Since we observed 1000 fps,
we can state that we are 95% confident that TCPTest – with

respect to the selected test and simulation configurations –

has a true negative rate between 0.98 and 0.994.

C. Testing security configurations

In this scenario, the cloud provider wants to certify

requirements related to secure communication and config-

uration. Such requirements may stem from, e.g., Section
6.4.5 Encryption of ENISA IAF, SC-8 Transmission Con-
fidentiality and Integrity of NIST SP 800-53 or IVS-04 of

the CCM. As an example, we assume that the provider has

decided on two techniques: One tests if data transferred to

the cloud services is vulnerable during transit. The other

tests if the cloud service exposes vulnerable interfaces. The

remaining question for the provider is now how the two

test-based techniques have to be configured to correctly

detect how many times configurations of interfaces and

communication were vulnerable and how long it took to fix

these vulnerabilities.

1) Design of test-based technique: Regarding secure

communications, we use sslyze3 to analyze the TLS con-

figuration of SaaSOS and parse its output to identify weak

cipher suites (TLSTest). To detect vulnerable interfaces, we

use Nmap to discover reachable ports of PaaSOS in the range

1-65535 (PortTest).
2) Alternative test configurations: Here the provider can

choose from three test configurations for PortTest, i.e. exe-
cuting PortTest either every 10, 30 or 60 seconds. In case

of the TLSTest, the provider does not want to fix but to

randomize the waiting time until the next test starts. To

that end, he can choose between configuring three intervals:

[0, 10], [0, 30] or [0, 60] seconds.
3) Simulation configuration: To evaluate our three can-

didate test configurations for TLSTest, we simulated 1000

vulnerable TLS configurations of SaaSOS by making the

weak cipher suite TLS_RSA_WITH_DES_CBC_SHA avail-

able. Each event lasted at least 60 seconds plus selecting

[0, 30] seconds at random. The interval between consecutive

downtimes was at least 120 seconds plus selecting [0, 60]
seconds at random. Further, we simulated 1000 events of

an exposed interface by opening port 27018 on PaaSOS,

3https://github.com/nabla-c0d3/sslyze
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the default port of sharded MongoDB instances which

should not be publicly reachable. Duration of each property

violation event and interval between events are identical to

those of the vulnerable TLS configuration simulation. Table

IV gives an overview of the simulation parameters.

Table IV: Simulation parameters used for TLSTest and PortTest

Simulation VTLSTest VPortTest

parameter [0,10] [0,30] [0,60] 10 30 60
pveD(sec) 75050.77 74817.15 75477.49 76020.15 75418.79 75070.35

x̄pveD(sec) 75.05 74.82 75.48 76.02 75.42 75.07

sdpveD(sec) 8.9 8.97 9.26 8.78 9.3 8.82

4) Test statistics: Table V provides an overview of the

results of TLSTest and PortTest. Note that the reason for the

relatively high number of executed tests (tsrC) of TLSTest
lies in randomization of intervals between successive tests.

Table V: Summary of test statistics of TLSTest and PortTest

Test TLSTest PortTest
statistic [0,10] [0,30] [0,60] 10 30 60
tsrC 34801 13771 7332 22039 7501 3767

ts
r

(s
ec

) x̄tsr 1.5 1.43 1.38 0.2 0.19 0.16

sdtsr 0.59 0.62 0.46 0.17 0.13 0.17

mintsr 0.1 0.1 0.1 0.05 0.1 0.1

maxtsr 19.73 19.39 19.18 2.48 2.16 2.86

br
C

brCTN 11701 4540 2429 7297 2477 1232

brCPTN 0 0 0 0 0 0

brCFP 104 34 21 86 20 12

brCFN 260 83 39 11 5 3

fp
sC

fpsCTN 997 996 999 1003 999 998

fpsCPTN 2 3 0 0 0 0

fpsCFP 1 1 1 1 1 2

fpsCFN 56 4 0 0 0 0

fp
sD

(s
ec

)

x̄TN 74.54 75.39 75.41 75.31 75.17 74.42

sdTN 10.08 14.18 23.19 10.79 15.38 25.57

x̄PTN 74.39 85.37 0.0 0.0 0.0 0.0

sdPTN 0.5 19.37 0.0 0.0 0.0 0.0

x̄FP 87.02 73.02 84.02 61.16 76.26 66.25

sdFP 0.0 0.0 0.0 0.0 0.0 5.66

x̄FN 5.28 18.47 0.0 0.0 0.0 0.0

sdFN 2.78 4.49 0.0 0.0 0.0 0.0

cf
ps

D
(s

ec
) TN 74319.02 75091.12 75335.13 75531.65 75091.74 74268.62

PTN 148.77 256.12 0.0 0.0 0.0 0.0

FP 87.02 73.02 84.02 61.16 76.26 132.5

FN 295.88 73.9 0.0 0.0 0.0 0.0

5) Performance TLSTest: Selected performance measures

in Table VI show that running TLSTest every [0, 30] seconds
provides the highest true negative rate tnr and the lowest

false positive rate fpr for the test metric brC, i.e. when

evaluating performance of TLSTest using every test result

observed during simulation. In turn, when considering how

many simulated vulnerable TLS configurations TLSTest cor-
rectly detects (fpsTN ), then running it every [0, 10] seconds
performs best as it has the highest tnr and lowest fpr.
Lets assume that the cloud provider prefers conservative

estimates of security requirements’ satisfaction, that is, the

provider prefers overestimating over underestimating the

duration of vulnerable TLS configurations. Thus the provider

will run TLSTest every [0, 30] seconds because on average

this configurations overestimates the duration a vulnerability

by 538 ms (x̄TN ) whereas running TLSTest every [0, 10] or
[0, 60] seconds both underestimate a property violation event

on average by 509 ms or 58 ms, respectively.

6) Performance PortTest: As shown in Table VI, when

evaluating performance of PortTest based on test metric

brC, then running PortTest every 30 seconds is superior

to the other two configurations because it has the highest

true negative rate tnr and the lowest false positive rate fpr.
Further, performance measures derived from fpsC indicate

that the PortTest running every 10 and 30 seconds have

similar tnr and fpr while running every 60 seconds has

inferior performance. Lastly, the relative error that PortTest
makes on average (x̄rel

TN ) when estimating duration of vul-

nerable interfaces increases with longer intervals between

tests. Hence running PortTest every 10 seconds provides

most accurate results.

If the cloud provider was only interested in correctly

detecting the number of times an interface was vulnerable,

then measuring performance based on brC is most suitable

and running PortTest every 30 seconds would be his choice.

Lets assume that in this case the provider prefers to most

accurately measure how long it takes to fix a vulnerable

configuration based on fpsD. In this case, running PortTest
every 10 seconds is the provider’s best choice. In our sce-

nario, the provider thus cannot achieve both goals simultane-

ously, he has to compromise on the accuracy of either brC
or fpsD. These results highlight how our method can reveal

performance trade-offs between alternative configurations of

continuously executed test-based certification techniques.

V. RELATED WORK

A. Test-based certification of cloud services

Anisetti et al. [7][8] present a test-based certification

scheme for cloud services and describe how to test five prop-

erties derived from the security guide of OpenStack. Ullah et

al. [11] propose using vulnerability assessment tools to test

cloud service compliance. Anisetti et al. [12][13] present a

model-based approach to re-use test-based evidence for re-

certification within evolving, i.e. changing services. Services

are modeled as Symbolic Transition Systems from which

test-models are generated. Stephanow et al. [14] propose an

approach to support test-based cloud certification of oppor-

tunistic cloud providers. These are fraudulent providers who

will reduce costs by only pretending to satisfy customers’

requirements but only if their deception remains undetected.

Our work is complementary to [7][8][11][12][13][14] as

neither of them considers concrete test metrics and how

to evaluate the performance of continuously executed test-

based certification techniques.
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Table VI: Evaluation of techniques to test security configurations

Performance TLSTest PortTest
measure [0,10] [0,30] [0,60] 10 30 60

eb
rC

tnr 0.9912 0.9926 0.9914 0.9884 0.992 0.99

E95%
tnr 0.0017 0.0025 0.0037 0.0025 0.0035 0.0054

fpr 0.0088 0.0074 0.0086 0.0116 0.008 0.0096

E95%
fpr 0.0017 0.0025 0.0037 0.0024 0.0035 0.0054

ef
ps

C

tnr 0.999 0.999 0.999 0.999 0.999 0.998

E95%
tnr 0.002 0.002 0.002 0.002 0.002 0.0028

fpr 0.001 0.001 0.001 0.001 0.001 0.002

E95%
fpr 0.002 0.002 0.002 0.002 0.002 0.0028

ef
ps

D
(m

s) x̄TN -509 538 -58 -734 -251 -670

x̃TN -87 480 -653 -324 330 -9036

sdTN 4786 10728 21185 6027 11718 24192

E95%
TN 297 667 1315 373 727 1502

ef
ps

D
re

l x̄rel
TN (%) 4.86 11.51 23.17 5.10 12.32 25.06

sdrel
TN (%) 4.38 8.95 16.56 6.09 9.70 18.21

E95%
rel,TN (%) 0.27 0.56 1.03 0.38 0.6 1.13

ec
fp

sD

TN (sec) -582.9 530.1 -142.4 -488.5 -327.1 -801.7

TN (%) 0.78 0.71 0.19 0.64 0.43 1.06

FP (sec) 87.02 73.1 84.02 61.2 76.3 132.5

B. Test-based certification techniques

Focusing on specific test-based techniques, Huang et al.

[10] propose an approach to detect a provider who is cheat-

ing on providing CPU resources to customers. Albelooshi et

al. [9] present a test to verify memory and disk sanitization

of virtual machines which can be used to support certifi-

cation of customer requirements regarding unwanted data

remanence. Juels and Oprea propose an approach to verify

data stored in a cloud using dynamic Proofs of Retrievability

(PoR) [15]. Our work is orthogonal to [9][10][15] since they

can use our approach to evaluate the performance of their

test-based techniques when continuously executed.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced a method to evaluate the

performance of continuous test-based cloud service cer-

tification. Our methods allows to evaluate and compare

continuously executed test-based certification techniques and

it supports inference of conclusions about a test-based tech-

nique’s performance in general.

One drawback of our approach lies in the arbitrary

selection of duration and frequency of property violation

events. As part of future work, we will develop a method to

design property violation simulations based on real world

requirements, e.g. rare events, and extend our approach

accordingly. Also, we will explore how to measure the

overhead imposed on cloud services under test, especially

when facing multiple continuous tests. This will allow us to

select test-based techniques and configurations which incur

minimal overhead while retaining required accuracy of test

results.
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