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Process planning is a crucial activity, connecting product development and manufacturing of fiber com-
posite structures. Recently published Large Language Models (LLM) promise more flexible and autono-
mous workflows compared to state of the art automation methods. An autonomous agent for process
planning of fiber composite structures is implemented with the LangChain framework, based on
OpenAI’s GPT-4 language model. The agent is equipped with deterministic tools which encode a-priori
process planning knowledge. It can handle different process planning problems, such as cycle time esti-
mation and resource allocation. Combinations thereof are solved through executing a multi-step solution
path.
� 2024 The Authors. Published by Elsevier Ltd on behalf of Society of Manufacturing Engineers (SME).
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1. Introduction

Improvement of process planning offers great potential to
streamline and connect the design and manufacturing of products.
Computer-Aided Process Planning (CAPP) involves the automated
generation of manufacturing instructions based on design data,
and agent-based planning systems utilize autonomous software
agents to optimize and manage manufacturing processes. Large
Language Models (LLM) like OpenAI’s ChatGPT bridge the gap
between natural language and intuitive thinking, and the formal
languages used in engineering. Their reasoning and strategic think-
ing capabilities make them well-suited for complex and adaptive
process planning tasks.

This paper showcases a proof of concept for an LLM-based agent
for process planning of fiber composite structures. It provides ini-
tial insights whether an LLM-based agent is capable of solving pro-
cess planning tasks autonomously.
2. State of the art

Interaction between product development and manufacturing
poses a particular challenge in many industrial organizations [1].
Agent-based planning approaches for automating and optimizing
process planning have been published in various contexts, such
as integration of manufacturing planning, predictive machining
models, and manufacturing control [2]. Jia et al. [3] propose a
multi-agent system to integrate product development and manu-
facturing, using different functional agents representing domain
experts. Multi-agent systems can involve different agents for
design, process planning, manufacturing execution and many more
[4]. Distributed planning systems can optimize process planning
and scheduling simultaneously [5], where interaction between
agents is possible through negotiation, coordination and coopera-
tion [6]. Other planning strategies involve genetic optimization
[7] and deep Q-networks agents [8].

Large Language Models show generic reasoning and multi-step
strategic thinking and can thus act as agents to make decisions
in a planning scenario. Establishing robust reasoning capabilities
is still a primary challenge, but OpenAI’s GPT-4 model, published
in March 2023, already exposes remarkable strategic thinking
capabilities [9]. Singh et al. [10] highlight the capability of LLMs
to plan tasks, by scoring probable next steps based on a given
sequence. In addition to prior approaches, they add situated
awareness to autonomously plan actions within a dynamic envi-
ronment. Models such as SayCan [11] highlight how LLMs propose
feasible problem-solving sequences. Frameworks like LangChain
[12] ease the creation of customized LLM agents, which can be
equipped with tools like web search, database lookups, vector store
embeddings, and customized planning tools.

Process planning links the design and manufacturing of a pro-
duct [13], involving planning activities like operation sequencing
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and resource selection [14]. Many automation techniques have
been developed, such as rule-based expert systems [15], and gen-
erative process planning with geometrical feature recognition in
manufacturing [16] and assembly planning [17]. While many solu-
tions focus on metallic parts, the process planning of fiber compos-
ite aerostructures is addressed in [18] with a model-driven
approach based on graph-based design languages.

This work focuses on process chains for Carbon-fiber reinforced
polymers (CFRP) based on automated fiber placement (AFP). Fig. 1
shows a Coriolis C1 robot-based fiber placement machine [19].
The AFP head is mounted on a robot and places CFRP tows on a
layup tool, applying heat and pressure to ensure a strong bonding
between the incoming tows and the substrate [20]. Subsequent
processes include curing, forming, milling, edge sealing, varnish-
ing, non-destructive testing and others. The cycle time of each step
can be estimated with physics-based process models [21]. For
example, the cycle time of the AFP layup process is estimated
based on parameters such as tape width, feed velocity, tool dimen-
sions and fiber orientation. Such cycle time estimation tools will be
provided to autonomous planning agents in the presented
approach.
3. Approach

This paper presents a proof-of-concept autonomous process
planning agent for fiber composite structures using an LLM aug-
mented with custom process planning tools. The agent is supposed
to solve these problems autonomously:

1. Time Estimation: Estimate the cycle time, i.e., duration from
start to end, for a manufacturing task.

2. Process Chains: Determine which tasks are required in which
order to manufacture a specific component.

3. Resource Allocation: Identify the resources, e.g. machines,
required to manufacture a specific component.

4. Integrated Planning: Estimate the total cycle time for a chain of
tasks required to manufacture a component.

The agent receives planning tasks in natural language, see Fig. 2.
To solve these autonomously, it must unite reasoning capabilities,
provided by the pre-trained LLM, and process planning knowledge.
The core planning tools include Job Selection, Process Chain Setup,
Cycle Time Estimation, and Resource Allocation for different man-
ufacturing tasks. The Expert-in-the-Loop and Search tools assist
when external information is needed.

The autonomous planning agent is implemented based on the
OpenAI Functions agent of the LangChain [12] framework, using
the GPT-4-0613 model by OpenAI. The planning tools are imple-
mented as Python methods, which are called by the agent. The
approach does not require any fine-tuning of the LLM.
Fig. 1. Automated Fiber Placement Process [18].
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4. Results

The agent’s solution paths for the planning problems (1)–(4) are
illustrated in Fig. 3. This figure depicts the observed solution as a
workflow, where colored boxes represent tool calls and arrows
depict data flow between them.

Time Estimation (1): The agent is asked for the duration of the
AFP layup process for a component with an area of 5 m2, laminate
thickness of 1.5 mm, a fiber orientation of 0�, and dimensions 2.5
m � 2 m. It calls the Cycle Time Estimation tool for AFP layup, hands
over the component parameters and retrieves the answer 3.18 h.

Process Chains (2): The agent is asked to list the tasks required
to manufacture a thermoplastic composite component. It first uses
the Job Selection tool with the inferred component type
(‘CompositeComponent’) and component material (‘Thermoplast-
CF’). The return value ‘2dAfpManufacturingJob’ is propagated to
the Process Chain Setup tool, which returns the task sequence
ToolPreparationTask – AfpLayupTask – PressFormingTask –
PostProcessingTask.

Resource Selection (3): The user asks for resources required to
manufacture a thermoset composite component. As in the preced-
ing case, the agent correctly invokes Job Selection and Process Chain
Setup, which now yields a slightly different process chain for ther-
moset instead of thermoplastic composites, including a
‘AutoclaveCuringTask’. After the task sequence was determined,
the agent calls the Resource Selection tools for tool preparation,
AFP layup, autoclave curing and post processing, and provides a
summary of the required resources, such as an AFP machine, an
autoclave and mechanics.

Integrated Planning (4): This problem is a combination of
problems (1)–(2). The console log is given in Listing 1, and show-
cases multistep problem-solving capabilities of the LLM-based pro-
cess planning agent. The agent is asked for the necessary
manufacturing tasks and the total duration of a thermoset compos-
ite component. It calls the Job Selection and Process Chain Setup
tools for the thermoset route. Subsequently, the Cycle Time Estima-
tion tools for each of the four involved tasks are invoked with the
given component parameters. The final answer is the summed up
total time of 9.56 h. This excludes logistics, buffer, and unexpected
downtimes.

The Expert-in-the-Loop and Search tools provide additional flex-
ibility when information is missing. For example, when asked how
long the manufacturing of a 3 m � 2 m composite skin panel takes,
the agent invokes the Expert-in-the-Loop tool, asking for missing
parameters like the thickness of the laminate. Following the
expert’s reply that the laminate consists of 8 plies of M21 prepreg,
Search is applied to obtain the ply thickness of M21 prepreg
Fig. 2. LLM planning agent scheme.



Fig. 3. (a) Process planning tools and (b) Agent’s solution paths for planning
problems 1–4.

Listing 1. Protocol for integrated planning (problem 4).
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(0.184 mm) from a search engine. In another call of the Expert-in-
the-Loop tool, the agent asks for the average fiber direction. After
this, it has all the information to run the Job Selection, Process Chain
Setup, and Cycle Time Estimation tools like in problem (4).

If any of the process planning tools is removed from the toolbox,
the agent is not able to solve the presented planning problems in
the same precise way. By implementing tools with restricted argu-
ments, we have implicitly defined system boundaries and a param-
eter space. These can be modified without any form of training,
allowing for a quick adaptation to a company’s actual process plan-
ning knowledge and process portfolio.
5. Summary and outlook

This study demonstrates the feasibility of LLM-based process
planning agents, providing adaptive planning capabilities to non-
experts. Using a GPT-4 model within the LangChain framework,
our agent successfully solves core problems like job selection, pro-
cess chain setup, cycle time estimation, and resource allocation.
Currently focused on fiber composite AFP processes, the approach
can be extended to other manufacturing domains. The LLM’s rea-
soning is guided by structured tools, removing the need for process
planning expertise from the end user. Decision-making can be
traced back to these tools, allowing for subsequent verification of
the results.

A promising area of further research lies in explicit model rep-
resentation. Storing process plans, and any interim results of pro-
cess planning, in persistent graph databases could significantly
expand complexity handling of the LLM agent. Further improve-
ments may originate from the use of class models and ontologies
to create a more defined solution space.
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Integration of advanced simulation tools into the process plan-
ning toolset can further increase planning accuracy. More potential
for improvement arises from fine-tuning models to process plan-
ning instead of applying off-the-shelf pretrained LLMs. In sum-
mary, there remains great potential to further improve the
capabilities of LLM-based agents in process planning scenarios.
We believe that our approach can be generalized to any planning
scenario which is similar in complexity.
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